Appendix B Stormwater Quality Best Management Practice Design Handbook

Grass Swale Example

Datasheet

Site Conditions:

A _{total} = 80 acres	(from worksheet 2)
$Q_{BMP} = 9.27 \text{ cfs}$	(from worksheet 2)

Design Assumptions:

Swale Geometry:

Initially, some of the swale design parameters must be chosen within the ranges listed for the design criteria. Site constraints may influence some of these values. In this example the following assumptions were made:

Side slope z = 3:1 (maximum) Channel slope s = 1% (2% maximum, 0.2% minimum) Depth of flow D = 5" (5" maximum)

These values can be used in the Manning Equation to solve for the required channel width:

$$\begin{split} & \mathsf{Q}_{\mathsf{BMP}} = (1.49/n) \; \mathsf{AR}^{2/3} \; \mathsf{s}^{1/2} \\ & \mathsf{where} \; \mathsf{A} = \mathsf{cross} \; \mathsf{sectional} \; \mathsf{area} \; (\mathsf{ft}^2) \\ & \mathsf{R} = \mathsf{hydraulic} \; \mathsf{radius} \; (\mathsf{ft}) = \mathsf{A/P} \\ & \mathsf{P} = \mathsf{wetted} \; \mathsf{perimeter} \; (\mathsf{ft}) \\ & \mathsf{n} = \mathsf{manning} \; \mathsf{n} \; \mathsf{value} = 0.15 \; \; (\mathsf{standard}) \end{split}$$

Using Manning's Equation:

Swale bottom width b = 55 ft Design flow velocity v = 0.4 fps

Design Length:

The design length is based on the following equation for a 7 minute minimum contact time:

L = (7 minutes) x (v) x (60 sec/min)= 168 feet minimum

Vegetation:

Turf grass chosen as appropriate for the site.

Outflow Collection:

Grated inlet chosen as appropriate for the site.

Impervious %	A Soil RI =32	B Soil RI =56	C Soil RI =69	D Soil RI =75
0 (Natural)	0.06	0.15	0.24	0.31
5	0.10	0.18	0.28	0.35
10	0.15	0.23	0.33	0.40
15	0.19	0.27	0.37	0.44
20 (1-Acre)	0.24	0.29	0.38	0.41
25	0.27	0.35	0.43	0.49
30	0.32	0.38	0.46	0.51
35	0.35	0.41	0.47	0.51
40 (1/2-Acre)	0.40	0.45	0.50	0.53
45	0.44	0.48	0.52	0.55
50 (1/4-Acre)	0.49	0.53	0.55	0.59
55	0.53	0.57	0.58	0.62
60	0.57	0.61	0.62	0.66
65 (Condominiums)	0.61	0.65	0.65	0.77
70	0.65	0.69	0.70	0.76
75 (Mobilehomes)	0.69	0.71	0.73	0.75
80 (Apartments)	0.74	0.75	0.77	0.78
85	0.77	0.78	0.79	0.81
90 (Commercial)	0.82	0.83	0.83	0.84
95	0.86	0.86	0.87	0.88
100	0.90	0.90	0.90	0.90

Table 4. Runoff Coefficients for an Intensity = $0.2^{\text{ in}}/\text{hr}$ for Urban Soil Types*

*Complete District's standards can be found in the Riverside County Flood Control Hydrology Manual

Worksheet 2

Design Procedure Form for Design Flow							
Uniform Intensity Design Flow							
Designer: Benjie Cho							
Company:	Company: Riverside County Flood Control and Water Conservation District						
Date:	Date: 3/1/04						
Project:	BMP Example						
Location:							
1. Determ	ine Impervious Percentage						
a	Determine total tributary area	A _{total} =	80	acres	(1)		
b	Determine Impervious %	i =	50	%	(2)		
2. Detern Use Ta	nine Runoff Coefficient Values able 4 and impervious % found in step 1						
a	A Soil Runoff Coefficient	C _a =	.49		(3)		
b.	B Soil Runoff Coefficient	C _b =	.53		(4)		
C.	C Soil Runoff Coefficient	C _c =	.55		(5)		
d.	D Soil Runoff Coefficient	C _d =	.59		(6)		
3. Determ in tribu	ine the Area decimal fraction of each soil type itary area						
a	Area of A Soil / (1) =	A _a =	-		(7)		
b.	Area of B Soil / (1) =	A _b =	-		(8)		
C.	Area of C Soil / (1) =	A _c =	.27		(9)		
d.	Area of D Soil / (1) =	A _d =	.73		(10)		
4. Determ	ine Runoff Coefficient						
a.	C = (3)x(7) + (4)x(8) + (5)x(9) + (6)x(10) =	C =	.579		(11)		
5. Determ	ine BMP Design flow						
a	$Q_{BMP} = C \times I \times A = (11) \times 0.2 \times (1)$	Q _{BMP} =	9.27	<u>ft</u> ³ s	(12)		

Design Procedure Form for Grassed Swale			
Designer:Benjie ChoCompany:Riverside County Flood Control and Water Conservation DistrictDate:3/1/04Project:BMP ExampleLocation:			
1. Determine Design Flow (Use Worksheet 2)	Q _{BMP} =9.27 cfs		
 2. Swale Geometry a. Swale bottom width (b) b. Side slope (z) c. Flow direction slope (s) 	b = <u>55</u> ft z = <u>3:1</u> s = <u>1</u> %		
3. Design flow velocity (Manning n = 0.2)	v = ft/s		
4. Depth of flow (D)	D = _ 0.42_(<u>5</u>") ft		
 5. Design Length (L) L = (7 min) x (flow velocity, ft/sec) x 60 	L = <u>168</u> ft		
6. Vegetation (describe)	Turf Grass		
 Outflow Collection (check type used or describe "other") 	_X_ Grated Inlet' Infiltration Trench Underdrain Other		
Notes: Assuming a depth of 1 foot, this swale will require 0.222 acres of area.			